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Abstract 7 

Assimilation of satellite soil moisture and streamflow data into a distributed hydrologic model 8 

has received increasing attention over the past few years. This study provides a detailed analysis 9 

of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) 10 

surface soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) 11 

model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) 12 

method. Performance is assessed over the Salt River Watershed in Arizona, which is one of the 13 

watersheds without anthropogenic effects in Model Parameter Estimation Experiment (MOPEX). 14 

A total of five data assimilation (DA) scenarios are designed and the effects of the locations of 15 

streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture and 16 

streamflow are assessed. In addition, a geostatistical model is introduced to overcome the 17 

significantly biased satellite soil moisture and also discontinuity issue. The results indicate that: 18 

(1) solely assimilating outlet streamflow can lead to biased soil moisture estimation; (2) when the 19 

study area can only be partially covered by the satellite data, the geostatistical approach can 20 

estimate the soil moisture for those uncovered grid cells; (3) joint assimilation of streamflow and 21 

soil moisture from geostatistical modeling can further improve the surface soil moisture 22 

prediction. This study recommends that the geostatistical model is a helpful tool to aid the 23 

remote sensing technique and the hydrologic DA study.  24 
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1 Introduction 1 

Soil moisture is a key variable of the earth system, with consequent impacts on the water, 2 

energy, and biogeochemical cycles [1]. An accurate representation of soil moisture is crucial for 3 

climate prediction, such as floods and droughts, and for better guidance in agriculture and water 4 

resources planning [2,3]. Soil moisture have also been analyzed to understand the changing 5 

water, energy, and carbon fluxes in the context of climate and land use change [4–9]. However, 6 

these soil moisture datasets suffer from  poor resolution, spatial heterogeneity, and bias issues 7 

[10–12]. One possible approach to reduce soil moisture predictive uncertainty is to integrate 8 

information from multiple sources (models, in-situ, and remotely sensed) through data 9 

assimilation (DA). DA has been emphasized as one of the key elements to improve hydrologic 10 

prediction in last decade [13–20].  11 

Applications of DA in the hydrologic community can be classified according to the study 12 

scale (single-scale or multi-scale) and the assimilated data (univariate or multivariate) [4,21]. 13 

Most DA studies belong to the univariate and single-scale scenario [22–28], where the univariate 14 

and single-scale indicate the assimilation of a single data type (e.g. streamflow) and the 15 

observation data scale coincides with the model scale (e.g. outlet of a watershed), respectively. 16 

There are also DA applications that assimilate univariate but multi-scale datasets [29–31]. Multi-17 

scale means that the spatial resolution of the assimilated observations is different from the model 18 

output resolution, and upscaling/downscaling techniques are usually required [10,24]. Currently, 19 

there is an increasing trend in the multivariate scenario (i.e., assimilating more than one data 20 

type). The multiple data can be from different satellite sensors [11,17,32,33], a combination of 21 

satellite and in-situ/data-driven data [34,35], and different in-situ data [36,37]. 22 
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With the development of remote sensing techniques, unprecedented spatial and temporal 1 

resolution of soil moisture data are available across a range of scales [38–41]. As a result, 2 

assimilation of remotely sensed soil moisture into hydrologic models has been receiving 3 

increasing attention [24,42–44]. These studies either focus on the soil moisture prediction 4 

[43,45–47] or streamflow prediction [48–50]. For the latter case, there is still no consensus in the 5 

community about the improvement in streamflow forecasting skill from the assimilation of 6 

satellite soil moisture [48,51–55]. Currently, assimilation of satellite soil moisture is still an 7 

active research area, as some key aspects of the assimilation framework have not been fully 8 

understood to date [49,50,56]. These aspects include: (1) characterizing the errors in model 9 

simulations; (2) the observation data error; (3) observation data discontinuity; (4) scale issues; 10 

(5) the optimal rescaling technique; and (6) the most suitable DA method [24,45,57–59]. In the 11 

following two paragraphs, we discuss two aspects of these challenges and propose possible 12 

solutions. 13 

DA Algorithm. Several DA algorithms have been used in soil moisture assimilation, such as 14 

the extended Kalman filter (EKF), the ensemble Kalman filter (EnKF), the variational (VAR) 15 

algorithm, and the particle filter (PF) [60]. For instances, Aubert et al. [61] used the EKF to 16 

assimilate the in-situ soil moisture and streamflow into the lumped GR4J model; Reichle et al. 17 

[62] assimilated the microwave soil moisture into a hydrologic model using the four-dimensional 18 

(4-D) VAR technique. But the DA approach used in the majority of satellite soil moisture 19 

assimilation studies is state updating of the EnKF  [13,33,53]. However, two limitations exist in 20 

these studies: (1) The Gaussian error assumption within EnKF is unsuitable for hydrological 21 

cases and the final performance is often suboptimal [27,63,64]; (2) Under the climate and land 22 

use change, the stationary parameter assumption is challenged [9,19,20]. Alternatively, the PF 23 
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algorithm with parameter updating technique is suggested as a more robust DA technique for 1 

hydrological studies in a changing world [14,18,22,24,27]. Compared with EnKF, the PF can 2 

relax the Gaussian error assumption, maintain water balance, and provide a more complete 3 

representation of state/parameter posterior distribution [23,46,47,65]. The PF technique can be 4 

further improved by combining with Markov chain Monte Carlo (MCMC). The PF-MCMC was 5 

first proposed in statistical literature by Andrieu et al. [66]. Moradkhani et al. [27] re-designed 6 

the PF-MCMC and introduced it to the hydrologic community by integrating the variable 7 

variance multiplier [63] for appropriate perturbation of observation and also including the 8 

parameter updating to the whole DA scheme. Vrugt et al. [26] also used the PF-MCMC for state-9 

parameter updating using a parameter optimization and assimilation approach.  10 

Data Discontinuity. Due to the temporal and spatial limitations of many satellite 11 

instruments, it is common that not all the watershed grid cells can be measured at the same time. 12 

For instance, the overpass of Soil Moisture and Ocean Salinity (SMOS) is at minimum every 13 

three days [39]. In addition, the C/X bands have higher attenuation in the presence of vegetation, 14 

and these measurements are significantly biased for dense vegetated areas [41]. Han et al. [67] 15 

and Yin et al. [68] found that the quality of satellite soil moisture data impacted their 16 

assimilation and that assimilation with biased soil properties can worsen surface fluxes 17 

characterization. In order to overcome sensor limitations and improve the accuracy of soil 18 

moisture estimates at uncovered/biased grid cells, a geostatistical method–general Gaussian 19 

approach [69] is used in this study. The advantages of this method are: (1) the general Gaussian 20 

approach can predict the soil moisture data at the uncover/biased grid cells instead of relying on 21 

the localization concept [45]; (2) the general Gaussian approach is a more robust model than the 22 

traditional geostatistical variogram model [69].  23 
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Based on the above discussion, there are two objectives of this study: (1) investigate the 1 

effects of PF-MCMC on the assimilation of satellite soil moisture for soil moisture and 2 

streamflow prediction; (2) introduce the geostatistical model to overcome the data discontinuity 3 

issue, and study the effects of assimilation of soil moisture estimated from geostatistical model. 4 

Here we used the synthetic Advanced Scatterometer (ASCAT) soil moisture [40] and a fully 5 

distributed hydrological model–Sacramento Soil Moisture Accounting (SAC-SMA) with 6 

Muskingum-Cunge routing method. We aim to answer the following five science questions: 7 

(1) What are the effects of jointly/separately assimilating streamflow and soil moisture data 8 

on streamflow prediction by PF-MCMC?  9 

(2) What are the effects of assimilating streamflow from internal/outlet gauges on the 10 

streamflow prediction at a watershed scale?  11 

(3) Given the limitation of remote sensing instruments (for instance, the vulnerability to 12 

radio frequency interference and uncovered regions), can the general Gaussian 13 

approach accurately fill in the soil moisture for these regions?  14 

(4) What are the effects of assimilating soil moisture derived from the geostatistical model 15 

on soil moisture and streamflow prediction? 16 

This paper is organized as follows: Section 2 describes the theory of PF-MCMC, the 17 

hydrological model, and the geostatistical model. Section 3 illustrates our experiment design, 18 

including the study area, data error, synthetic data, DA scenarios, and performance verifications. 19 

Finally, the results and discussions are provided in Section 4.   20 

 21 

  22 
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2 Methodology  1 

2.1 Sequential Bayesian Theory 2 

Following Moradkhani [4], the state-space model that describes the generic non-linear earth 3 

system are as follows: 4 

 �� = ℎ���� + 	� (1) 

   �� = 
�����, ��, �� + �� (2) 

where �� ∈ ℝ� is a vector of the uncertain state variables at current time step, �� ∈ ℝ� is a 5 

vector of observation data, �� is the uncertain forcing data, � ∈ ℝ� is the model parameters, ℎ�∙� 6 

is the non-linear function relates the states �� to the observations ��, �� represents the model 7 

error, and 	� indicates the observation error. The errors ��  and 	� are assumed to be white noise 8 

with mean zero and covariance �� and ��, respectively.   9 

Following Moradkhani et al. [14], the posterior distribution of the state variables �� given a 10 

realization of the observations ��:� is written as follows: 11 

 ����|��:�� = ����|��:���, ��  � = ����|�������|��:��������|��:����
= ����|�������|��:����� ����|�������|��:������� 

(3) 

   ����|��:���� = � ���� , ����|��:��������� = � ����|�����������|��:��������� (4) 

where ����|��� is the likelihood, ����|��:���� is the prior distribution, and ����|��:���� is the 12 

normalization factor.  13 

In practice, the Equation (3) does not have an analytic solution except for few special cases 14 

(e.g., the linear system with Gaussian assumption). Instead, the posterior distribution ����|��:�� 15 

is approximated using a set of MC random samples.    16 

 17 
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2.2 Particle Filter-Markov Chain Monte Carlo (PF-MCMC) 1 

The PF-MCMC [27] is an extension of PF-SIR [14]. The application of the MCMC to PF leads 2 

to a more complete characterization of the parameter posteriors and reducing risk of sample 3 

impoverishment. The PF-MCMC consists of two steps: (1) generating the random replicates of 4 

model states forecasts and parameters with equal weights; and (2) updating forecasted states, 5 

parameters, and weights when new observations become available. This leads to the posterior 6 

density ����|��:��, which is approximated as:  7 

 ����|��:�� ≈  ��!"#$�� − ��!&'
!(�  (5) 

where ��!" is the posterior weight of the )th particle,  # is the Dirac delta function, and * is the 8 

ensemble size. Following Moradkhani et al. [27], the normalized weights are calculated as 9 

follows: 10 

 ��!" = ��!� �$��|��! , ��! &∑ ��!��$��|��! , ��!&'!(�  (6) 

where ��!� is the prior particle weights, and �$��|��! , ��!& can be computed from the likelihood 11 

,$��|��! , ��!&. Generally, a Gaussian distribution is used to estimate ,$��|��! , ��!&:  12 

 ,$��|��! , ��!& = 1.�20��|��| 1�� 2− 12 $	�!&3����$	�!&4 (7) 

where 	�! = �� − ℎ$��!& is the residual. 13 

To obtain approximate samples from ����|��:��, a resampling operation is required. The 14 

sampling importance resampling (SIR) algorithm [14] is suggested to resample the particles with 15 

a probability greater than the uniform probability. After resampling, all the particle weights are 16 

set equal to 1 *⁄ . To avoid the sample impoverishment, a perturbation of the resampled 17 
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parameters is recommended. Then, a proposal distribution is formed to generate proposed 1 

parameters ��!,6
: 2 

 ��!,6 = ��!" + 7�! ,         7�!~*90, ;�<=>$��!�&? (8) 

where ��!" is the parameters after SIR, <=>$��!�& is the variance of the prior parameters at the 3 

current time step, and ;� is a small tuning time-variant parameter. To reject the parameter 4 

samples ��!,6
 that move outside the filtering posterior distribution, a metropolis acceptance ratio 5 

@ is used to determine whether to accept the proposed parameters:   6 

 @ = A)B C1, �$��!,6, ��!,6|��:�&�$��!", ��!"|��:�&D (9) 

where �$��!,6, ��!,6|��:�& is the proposed joint probability distribution: 7 

 �$��!,6, ��!,6|��:�& ∝ �$��|��!,6, ��!,6& ∙ �$��!,6|��!,6, ��:���& ∙ �$��!,6|��:���& (10) 

 ��!,6 = 
$����!" , ��!", ��!,6& (11) 

where ��!,6
 is a sample from the proposal state distribution and ��!" is the resampled forcing data. 8 

The advantage of the MCMC move is that it does not adjust the state variables therefore still 9 

retains the water balance.     10 

Moradkhani et al. [27] modified the variable variance multiplier (VVM) method [63] which 11 

automatically finds the most fitting tuning factor ;� in Equation (9). The tuning factor is self-12 

adaptive based on the spread of the previous states. The procedure of VVM is as follows:  13 

 FG� = |H���I� − ��| (12) 

 �J� = K��,LM − H���I�, H���I� < ��H���I� − ��,OM, H���I� > �� (13) 

 1>� = Q RA1�)=B S FG���TUV�:��J���TUV�:�W − 1X + 1 (14) 
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 ;� = 1>� ∙ H9;���TUV�:�? (15) 

where H���I� is the forecast expected value, �� is the observation, ��,OM
 and ��,LM

 are the 25th and 1 

75th forecast quantiles, respectively; Q is the smoothing value and is set to 0.5; the lag time is set 2 

to 100 as suggested by Moradkhani et al. [27].  3 

 4 

2.3 General Gaussian Model 5 

The general Gaussian model is used in this study to predict soil moisture for uncovered/biased 6 

grid cells. We used the physical covariates which directly ties to soil moisture in the model. As 7 

opposed to traditional geostatistical modeling (such as kriging), which considers the covariates 8 

as fixed, the general Gaussian model treats the covariates as random variables [69]: 9 

 Y��B� = Z� + [\]�B�^ (16) 

where Y��B� �A × 1� is the vector of observations at a finite number of locations B =10 

�B�, BO, … , B�� in the study region; Z� is a fixed mean parameters for A locations at time step a; 11 

]�B� = 9]��B�, ]O�B�, … , ]6�B� ? is a vector of � covariates associated with the locations B; and 12 

[ is the zero-mean stationary Gaussian process, which is characterized by a covariance matrix: 13 

 bc	d[9]$Be&?, [\]�Bf�^g = b�9]$Be&, ]�Bf�? (17) 

where h = 1,2, … , A,  i = 1,2, … , A, and b�\∙^ is an isotropic exponential covariance function, 14 

where 15 

 b�9]$Be&, ]�Bf�? = @�O + j�O1��9−kBe − Bfk/m�? (18) 

where @�O is the nugget, j�O is the partial sill, and m� is the range parameters.  16 

The goal of the general Gaussian model is to predict the soil moisture value Y��B�"�� for 17 

uncovered grid cells B�"�. After fitting the Equation (18), the ordinary kriging method is used 18 

here to estimate the uncovered grid cell Y��B�"�� [70,71]. In this study, three covariates directly 19 
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tied to soil moisture are considered: elevation, slope, and aspect. More details are provided in 1 

Section 4.5. The general assumption behind the geostatistical model is that model is a second-2 

order stationary and isotropic, where for sites Be and Bf, the isotropic exponential covariance 3 

b�9]$Be&, ]�Bf�? depends only on the distance kBe − Bfk.  4 

 5 

2.4 Sacramento Soil Moisture Accounting Model 6 

The SAC-SMA model is a nonlinear conceptual rainfall-runoff model with spatially lumped 7 

parameters. The model was first developed by Burnash et al. [72] and it is used operationally by 8 

the National Weather Service River Forecast Centers for streamflow forecasting. The model 9 

includes two soil moisture zones, an upper and a lower zone. The upper zone is responsible for 10 

surface runoff and interflow, while the lower zone controls baseflow. Short-term storage of water 11 

in the soil is accounted in the upper zone, while the long-term storage of groundwater is in the 12 

lower zone. When the upper zone water storage is satisfied, the upper zone water can move 13 

vertically into the lower zone and horizontally as interflow. Excess runoff is routed to the 14 

watershed outlet using a Nash cascade of three linear reservoirs. A total of six interdependent 15 

soil water states are estimated in SAC-SMA model: upper zone tension water content (UZTWC), 16 

upper zone free water content (UZFWC), lower zone tension water content (LZTWC), lower 17 

zone free primary water content (LZFPC), lower zone free secondary water content (LZFSC), 18 

and basin saturated fraction (ADIMP). Precipitation and potential evapotranspiration (PET) are 19 

the required forcing data for SAC-SMA model.  20 

The 17 SAC-SMA model parameters are summarized in Table 1. The synthetic truth 21 

parameters used to generate the synthetic streamflow and soil moisture are also shown in Table 22 

1. Figure 1 presents the flowchart for the combined DA and geostatistical modeling. 23 
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 1 

------------------------------------------------ 2 

Please place Table 1 here 3 

----------------------------------------------- 4 

------------------------------------------------ 5 

Please place Figure 1 here 6 

----------------------------------------------- 7 

 8 

 9 

3 Experiment Design  10 

In order to assimilate the ASCAT soil moisture data, the SAC-SMA is implemented in a 11 

distributed manner, where the runoff in each grid cell is routed along the stream segments to the 12 

watershed outlet using the Muskingum-Cunge routing method [73]. Synthetic observations of 13 

streamflow and soil moisture are generated using the SAC-SMA model with a predefined 14 

parameter value (Table 1). The daily synthetic soil moisture (degree of saturation) is used to 15 

represent the ASCAT soil moisture product. The benefit of a synthetic study is to allow a direct 16 

comparison between model simulations and the “truth” such that the systematic biases between 17 

remotely sensed and model based soil moisture estimates can be avoided; otherwise rescaling 18 

method would be necessary [24,74].    19 

 20 

3.1 Study Area  21 

The study area is a sub-watershed of Salt River basin (HUC 150601), located in the west of 22 

Arizona, east of the city of Phoenix (Figure 2). The target watershed crosses four counties (Gila, 23 
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Navajo, Apache, and Graham) of Arizona with an area of 7,379 km2. The soil texture within the 1 

watershed is clay and the major land use is forest (75%) and shrub (22%). A total of five USGS 2 

streamflow gauges are operated within the watershed. Based on these gauges, five sub-3 

watersheds are delineated (Figure 2). The studied watershed is one of the selected watersheds in 4 

the Model Parameter Estimation Experiment (MOPEX) [75], therefore the effects of water 5 

management can be ignored.  6 

 7 

------------------------------------------------ 8 

Please place Figure 2 here 9 

------------------------------------------------ 10 

 11 

3.2 Synthetic ASCAT Soil Moisture  12 

The ASCAT sensor is a C-band (5.255 GHz) active microwave scatterometer on board of a 13 

series of three polar orbiting Meteorological Operational (METOP) satellites. The first satellite 14 

(METOP-A) was launched in October 2006, the second (METOP-B) in September 2012, and the 15 

third (METOP-C) is scheduled for launch in 2018 [44]. Two nominal spatial resolutions of the 16 

ASCAT backscatter measurements are available: 50 km and 25 km. Complying with the 17 

Nyquist–Shannon sampling theorem, the grid spacing of the 50 km product is 25 km, and the 25 18 

km product is 12.5 km [40]. Unlike other remotely sensed products, ASCAT soil moisture is 19 

expressed in terms of degree of saturation (range between 0 and 1), not the volumetric soil 20 

moisture (m3/m3) itself.  21 

To represent daily ASCAT 12.5×12.5 km2 surface soil moisture product, the study 22 

watershed was distributed to 12.5×12.5 km2 grid cells and a total of 46 grid cells were delineated 23 
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(Figure 2). To generate the synthetic ASCAT surface soil moisture product, it is assumed that the 1 

SAC-SMA model upper zone soil moisture states (UZTWC and UZFWC) are directly observed 2 

by remotely sensed surface soil moisture retrievals [55]. Hence, the synthetic ASCAT soil 3 

moisture in terms of degree of saturation n can be estimated as:   4 

 n = opqrb + opsrbopqrt + opsrt (19) 

where UZTWM is the upper zone tension-water maximum and UZFWM is the upper zone free-5 

water maximum (Table 1).  6 

 7 

3.3 Forcing Data 8 

Daily precipitation data from Oct. 1 2005–Sep. 30 2007 were acquired from Oregon State 9 

University Parameter-elevation Regressions on Independent Slopes Model (PRISM) 4-km2 grid 10 

cell data (http://www.prism.oregonstate.edu/). For each 12.5×12.5 km2 grid cell in the study area, 11 

the mean area precipitation data were upscaled from the finer PRISM grid cell data. The PET 12 

data in the same period were obtained from the Moderate-resolution Imaging Spectroradiometer 13 

(MODIS) global terrestrial evapotranspiration dataset [76]. The PET product MOD16 is a 1-km2 14 

resolution data at 8-day intervals. After disaggregating MOD16 to daily data, the 1-km2 daily 15 

PET data were upsclaed to obtain the 12.5×12.5 km2 mean area PET data.  16 

The spatial pattern of the mean daily precipitation and PET calculated from the whole time 17 

period are presented in Figure 3. It is noted that elevation is the main determinant of precipitation 18 

patterns, where precipitation is significantly enhanced (more than double) on higher-elevation 19 

grid cells compared to lowlands. For PET data, much of the variation is likely caused by local 20 

topographic effects and land cover. Figure 3 shows how PET slightly decreases with increasing 21 

elevation and transformation from shrub to forest.  22 
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 1 

------------------------------------------------ 2 

Please place Figure 3 here 3 

------------------------------------------------ 4 

 5 

3.4 Data Assimilation Scenarios  6 

Our preliminary results show that by solely assimilating the synthetic ASCAT surface soil 7 

moisture, the PF-MCMC (with parameter updating) can lead to a significant difference in the 8 

parameter estimation of the model. As a result, the skill of streamflow prediction is significantly 9 

degraded. The univariate assimilation of surface soil moisture is not sufficient to constrain the 10 

hydrologic model parameters. Similar result was also reported by Plaza et al. [46]. In addition, 11 

Lee et al. [36] and Wanders et al. [35] suggested that the benefits of satellite soil moisture are 12 

largest when they are assimilated simultaneously with streamflow observations.  13 

The two main goals of this study are to investigate the performance of PF-MCMC on soil 14 

moisture and streamflow predictions, and to introduce the geostatistical model to overcome the 15 

satellite data discontinuity issue and assimilation of the soil moisture estimated from the 16 

geostatistical model (Figure 1). Several other factors affect the investigation, such as the gauge 17 

location and the satellite soil moisture. Therefore, a total of five scenarios were designed to 18 

explore difference approaches in DA performance. The details of these five scenarios are 19 

summarized in Table 2.  20 

The effects of assimilating outlet or internal gauges are compared in scenarios 1-3. The 21 

effects of soil moisture are investigated by jointly assimilating with streamflow in scenario 4. 22 
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Finally, scenario 5 jointly assimilates the streamflow and soil moisture data estimated from the 1 

geostatistical model.  2 

 3 

------------------------------------------------ 4 

Please place Table 2 here 5 

------------------------------------------------ 6 

 7 

3.5 Performance Metrics 8 

Three metrics were used to assess the performance of the DA: the Nash-Sutcliffe efficiency 9 

(NSE), the root mean square error (RMSE), and the 95% exceedance ratio (ER95).  10 

 �tnH = u1q  ��� − �v��O3
�(�  (25) 

 *nH = 1 − ∑ ��� − �v��O3�(�∑ ��� − �w�O3�(�  (26) 

 H�95 = 1q  $�vzL.M%,� < ��  c> �vO.M%,� > ��& × 100%3
�(�  (27) 

where �v� is the ensemble mean prediction at time step a, �w is the observation mean over the time 11 

steps q, �vzL.M%,� and  �vO.M%,� indicate the 97.5% and 2.5% percentiles for the ensemble 12 

predictions. 13 

Both NSE and RMSE are the measures of the accuracy of expected value; whereas the 14 

ER95 is a probabilistic verification method where the observations fall outside the ensemble 15 

range just 5% of the time [77]. ER95 greater than five suggest the distribution is too narrow 16 

(over-confident) and ER95 less than five suggests the distribution is too wide (under-confident) 17 
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[27]. The assumption behind ER95 is that the ensemble predictions and observations are 1 

independent and identically distributed (i.i.d.) and the probability integral transform (PIT).  2 

For streamflow DA verification, the NSE and ER95 metrics are used. The NSE can be 3 

considered as a normalized RMSE and compared directly in different gauges. The i.i.d. 4 

assumption behind ER95 is more likely to be met by streamflow data [64,78–80]. But for soil 5 

moisture, they are persistent on seasonal-to-interannual time scales and the independent 6 

assumption of ER95 is seriously challenged [24]. Therefore, for soil moisture DA verification, 7 

only the RMSE is used. In addition, the RMSE is a standard metric used in SMOS and Soil 8 

Moisture Active Passive (SMAP) satellite missions [81].  9 

 10 

 11 

4 Results and Discussions 12 

For all the five DA scenarios, following DeChant and Moradkhani [82] and Moradkhani et al. 13 

[27], the precipitation was perturbed with a lognormal distribution with a coefficient of variation 14 

of 0.25, the PET and streamflow were assumed to follow normal distribution with a coefficient 15 

of variation of 0.25 and 0.15, respectively. The white noise (standard deviation) for synthetic 16 

ASCAT soil moisture is set to 0.04 according to Wagner et al. [44].  17 

The prior distributions of SAC-SMA parameters were uniformly distributed according to 18 

their default ranges presented in Table 1. The synthetic truth was also shown in Table 1. The 19 

initial parameters were sampled using the Latin hypercube sampling (LHS) method. The LHS is 20 

used due to its strength to properly sample the parameters by dividing the parameter space into 21 

regions of equal probability [14]. Parameter values are assumed to be uncorrelated in space.  22 
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The streamflow for the five gauges were generated using the same predefined SAC-SMA 1 

parameters shown in Table 1. For all scenarios, the SAC-SMA is applied in a distributed fashion. 2 

With the predefined model parameters, the synthetic soil moisture observations were generated 3 

for each grid cell based on Equation (19) and the runoff was routed to the streamflow segments. 4 

The streamflow of the five segments which are closest to the locations of the five streamflow 5 

gauges were used to represent the synthetic streamflow for the five gauges. 6 

 7 

4.1 The Effects of Streamflow Gauge Location on PF-MCMC 8 

In the distributed SAC-SMA model schematic, runoff generated in each grid cell was routed 9 

along the segments to the watershed outlet. Since the streamflow is structured by the hydrologic 10 

network, it is possible that by only assimilating the outlet streamflow, the prediction of internal 11 

gauge streamflow would be improved correspondingly. Similarly, by only assimilating the 12 

internal gauge streamflow, the outlet streamflow prediction is expected to be improved. The 13 

former schematic is generally described as “inverse routing” [83], and the latter schematic is 14 

related to “forward routing”. These effects were examined in scenarios 1-2. Scenario 1 only 15 

assimilated the outlet streamflow; while scenario 2 jointly assimilated the streamflow of the four 16 

internal gauges. Table 3 summarized the PF-MCMC performance for these two scenarios. 17 

 18 

------------------------------------------------ 19 

Please place Table 3 here 20 

------------------------------------------------ 21 
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For scenario 1, the outlet show an NSE value of 0.99, indicating a high accuracy in 1 

prediction. Meanwhile, the four internal gauges exhibited the same NSE value (0.99), except for 2 

gauge 3 (0.97). Gauge 3 had a less NSE value than the other gauges because of the high 3 

elevation. The contributing grid cells of gauge 3 had the highest elevations than other cells and 4 

received the largest precipitation in the watershed (Figure 3). It is therefore shown a high 5 

variance of perturbed precipitation and rainfall-runoff process. Overall, the average NSE value of 6 

the total five gauges was 0.99. This result indicated that by only assimilating the unbiased outlet 7 

streamflow based on PF-MCMC, the streamflow in each segment of the watershed can be 8 

correctly tracked through inverse routing.  9 

To further examine the performance of this inverse routing method, the mean runoff data 10 

for each grid cell before routing was compared with the synthetic “true” runoff value. Figure 4 11 

presents the mean daily synthetic, inverse routing runoff, and their mean RMSE values (mm/d) 12 

for each grid cell on all time steps. It is noted that the inverted runoff field (estimated for each 13 

grid cell and obtained by assimilating the outlet streamflow) shows a similar spatial pattern to the 14 

synthetic runoff. The largest daily mean RMSE value existed in the highest elevation cell with 15 

the value of only about 0.1 mm/d. This result indicated that by only assimilating the unbiased 16 

outlet streamflow data with PF-MCMC method, the fine scale runoff field inside the total 17 

watershed can be successfully inferred.  18 

 19 

------------------------------------------------ 20 

Please place Figure 4 here 21 

------------------------------------------------ 22 
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For scenario 2, four internal gauge streamflow were jointly assimilated. The NSE values 1 

for all the five gauges were 0.99, which indicated a very well prediction in the whole watershed. 2 

This result suggested that by only assimilating the unbiased internal gauge streamflow, the outlet 3 

streamflow can be correctly predicted. As seen in Table 3, the average predictive uncertainty 4 

range (in terms of ER95) decreased with the increasing number of assimilated gauges (from 5 

significantly under-confident to a little over-confident). Scenario 3 assimilated the streamflow 6 

from the five gauges and provided the best results with NSE=1 for outlet gauge. Figure 5 show 7 

the streamflow hydrographs for the five gauges based on scenario 3. It is noted that the mean 8 

simulated streamflow and synthetic observation hydrographs were overlapped with each other, 9 

because this is a synthetic study with large ensemble size 400.  10 

 11 

------------------------------------------------ 12 

Please place Figure 5 here 13 

------------------------------------------------ 14 

 15 

4.2 The Effects of ASCAT Soil Moisture on PF-MCMC 16 

The ASCAT surface soil moisture and outlet streamflow were jointly assimilated, and the results 17 

were presented in scenario 4 of Table 4. Results of scenario 1 were also presented in Table 4 to 18 

compare the effects of assimilating surface soil moisture on streamflow prediction. Besides the 19 

joint assimilation scheme, surface soil moisture had also been solely assimilated into the 20 

distributed hydrologic model. However, we found that by only assimilating the unbiased ASCAT 21 

surface soil moisture, the streamflow prediction skill would significantly decrease (NSE < 0) due 22 
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to incorrect parameter estimation in the lower zone of the SAC-SMA model. Therefore only the 1 

joint assimilation results were presented here. 2 

 3 

------------------------------------------------ 4 

Please place Table 4 here 5 

------------------------------------------------ 6 

 7 

The surface soil moisture RMSE values in Table 4 represented the watershed average 8 

during the simulation period. Compared with scenario 1, scenario 4 show a significant decrease 9 

of RMSE value by over 65% in predicting the surface soil moisture field. However, the average 10 

NSE value show a slight decrease of about 2%. This means that although assimilating the surface 11 

soil moisture resulted in no improvement in streamflow prediction skill with PF-MCMC, the 12 

surface soil moisture field can be predicted significantly better.  13 

Currently, there is no consensus in the community about the improvement in streamflow 14 

prediction skill from the assimilation of satellite soil moisture, since many factors affect the DA 15 

performance such as the DA algorithm, the particular model structure, the choice of bias 16 

correction technique, the appropriate quantification of observation and model forecast errors, the 17 

spatial mismatching, and the watershed topography and climatology [24,34]. Massari et al. [56] 18 

described this issue as a “complex recipe”. Since this is a synthetic study, the observation error 19 

and model structure error can be explicitly quantified. The rescaling method is also unnecessary. 20 

The key difference in this study is the application of PF-MCMC technique combined with 21 

geostatistical modeling, which is implemented in dual state-parameter updating scenario.  22 
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In literature, the study of assimilation of satellite soil moisture on streamflow prediction 1 

can be classified into synthetic study/observing system simulation experiment (OSSE) and real 2 

case study [33,49,53,55]. However, neither scenarios consider the parameter updating 3 

concurrently with the state updating. For synthetic study, typical procedures include: (1) an 4 

open-loop (OL) simulation of the hydrologic model with high-quality forcing inputs; (2) 5 

generating synthetic “true” satellite soil moisture from the open-loop simulation and 6 

incorporating realistic errors; (3) an OL simulation of the hydrologic model with the same pre-7 

defined parameters with lower quality forcing inputs; (4) assimilating the synthetic “truth” in the 8 

OL configuration from step (3). Finally, the DA results will be compared with the OL in step (1) 9 

to evaluate the impact of assimilating satellite soil moisture [42]. For the real case study, first, 10 

the hydrologic model is calibrated with the streamflow data (OL simulation). Next, the satellite 11 

soil moisture is assimilated into the calibrated model. Last, the DA results are compared with the 12 

OL simulations to determine if additional gains can be achieved beyond the optimized model 13 

[33,53,84].  14 

For our synthetic study, we did not have two input forcing but updated the state-parameter 15 

together using the PF-MCMC assimilation method. The degrading outlet streamflow predictions 16 

in the joint assimilation are compared with the outlet streamflow univariate assimilation only, 17 

i.e., no comparison with OL result is made. Unlike the state-augmentation technique used in the 18 

EnKF [13], the PF-MCMC resamples the particle weights based on model forecasts and 19 

observations. In the univariate outlet streamflow assimilation, particle weights are determined 20 

based on streamflow. The model forecasts receive the highest weight when they are closest to the 21 

observations. However, in the joint assimilation scenario, the particle weights depend on the joint 22 

distribution of soil moisture and streamflow. For instance, even if the streamflow forecast is 23 
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closest to the observations, this particle may receive low weight if soil moisture forecast is far 1 

away from the observation. For the real soil moisture assimilation study with PF-MCMC, please 2 

refers to Yan et al. [24]. 3 

 4 

4.3 The Effects of Soil Moisture Inferred from Geostatistical Model on PF-MCMC 5 

Figure 6 presented the synthetic ASCAT soil moisture for both dry and wet days. The spatial 6 

pattern show a trend of increased soil moisture from southwest to northeast of the watershed. 7 

Figure 7 show the three standardized covariates: elevation, slope, and the cosine of aspect, which 8 

are the effective covariates to predict soil moisture [69]. These three covariate values were 9 

calculated based on the USGS National Elevation Dataset (NED) 30-m DEM data 10 

(http://nationalmap.gov/elevation.html). The cosine value of the aspect represents the northern-11 

facing amount. From Figures 6-7, it is noted that the higher elevation consists higher soil 12 

moisture. The north-facing slope is easier to dry out.  13 

In order to better meet the isotropic assumption of the general Gaussian model, an 14 

orthogonal transformation is used for the three standardized covariates value, as suggested by 15 

Leung and Cooley [69]. The orthogonal standardized covariate ]I�B� are calculated as: ]I�B� =16 

Ω�� O⁄ ∙ ]�B�, where Ω is the sample covariance matrix of covariates ]�B� in Equation (18).  17 

 18 

------------------------------------------------ 19 

Please place Figures 6-7 here 20 

------------------------------------------------ 21 
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Because soil moisture varies at each time step, the regression coefficients in the model need 1 

to be optimized for each time step. As a result, a total of 730 general Gaussian models were built 2 

in this study and the maximum likelihood estimator (MLE) method was used to optimize each 3 

coefficient. After fitting the general Gaussian model, the predictions for uncovered cells were 4 

estimated using the ordinary kriging method [70,71]. Here, parts of the grid cells were treated as 5 

pseudo uncovered cells and the remaining grid cells were used to train the model. Finally, the 6 

RMSE is used to analyze the prediction skill based on these pseudo cells.  7 

The questions that remain are: (1) what proportion of the watershed area should be used to 8 

train the model, (2) if the satellite data only cover 30% of the study watershed, can one 9 

accurately predict the soil moisture for the other uncovered areas? No specific criterion has been 10 

suggested in literature to date. Considering that the goal of the satellite missions (e.g., SMOS and 11 

SMAP) is to reduce the RMSE of the remotely sensed soil moisture to less than 0.04 m3/m3 as 12 

compared with the in-situ soil moisture data, we use this threshold RMSE to answer the above 13 

question. 14 

In this study, different proportions of the watershed grid cells were randomly selected to 15 

train the model. The proportion started from 80% and decreased to 10%. For each proportion, the 16 

training cells were randomly selected. To avoid the random selection error, the RMSE for each 17 

proportion set was based on an average of 30 iterations. Figure 8 presented the RMSE values for 18 

prediction cells (pseudo uncovered cells), differing on the number of training cells. When the 19 

training data area decreased from 80% to 10%, the RMSE increased from 0.025 to 0.045. If only 20 

10% of the watershed area was used for training the model, the RMSE for the 90% uncovered 21 

area was larger than the threshold 0.04. However, when using more than 20% of the watershed 22 

area to build the model, the RMSE value for the uncovered areas was less than 0.036, which is 23 
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smaller than the threshold value of 0.04. This finding indicates that if the satellite data only 1 

covers 20% of the watershed or only the confident soil moisture retrievals for the 20% of the 2 

watershed is available, the general Gaussian model can predict the soil moisture for the 3 

remaining watershed under the same accuracy criteria as the satellite retrievals (RMSE<0.04). In 4 

other words, the general Gaussian model is a helpful tool to aid the remote sensing technique. 5 

 6 

------------------------------------------------ 7 

Please place Figure 8 here 8 

------------------------------------------------ 9 

 10 

Since using only 20% of the watershed area in the training model can give an acceptable 11 

soil moisture prediction (compared with the remotely sensed soil moisture retrieval error), the 12 

effects of assimilating the predicted soil moisture is examined in scenario 5. Here, we randomly 13 

selected the 20% grid cells (9 cells) to train the model, and predict the soil moisture for the 14 

remaining 80% cells (37 cells). The RMSE values based on the average of the whole time steps 15 

were presented in top left panel of Figure 9. The nine zero RMSE value cells in top-left panel of 16 

Figure 9 indicated the location of the training cells. It is noted that the majority of grid cells had 17 

the RMSE less than 0.04, except for some cells located on the high elevation. This also can be 18 

explained by the large precipitation value on these cells (Figure 3), resulting in high variability of 19 

the soil moisture than other cells. We assimilated the soil moisture from geostatistical model and 20 

outlet streamflow into SAC-SMA, and the PF-MCMC performance was presented in Table 4. 21 

 22 



25 

 

 1 

------------------------------------------------ 2 

Please place Figure 9 here 3 

------------------------------------------------ 4 

 5 

Compared with scenario 1 (only assimilating the outlet streamflow), the average NSE 6 

decreased from 0.99 to 0.91 (8% decrease). Especially for gauge 3, the NSE decreased from 0.97 7 

to 0.72 (26% decrease). The significant decrease of NSE value for gauge 3 is due to the 8 

assimilation of soil moisture for the high elevation cells. These cells had high bias soil moisture 9 

estimations from geostatistical model. Compared with scenario 4, the average NSE value 10 

decreased from 0.97 to 0.91 (6% decrease). However, for the surface soil moisture field, 11 

compared with scenario 1, the RMSE decreased from 0.54 to 0.25 (54% decrease).  12 

This result indicates that if we only calibrated the hydrologic model with outlet streamflow, 13 

other states might be significant biased. Using these biased states datasets might lead to 14 

unreliable assessment for other purposes, i.e., floods and droughts estimation [33,42,85–87]. If 15 

the satellite data cannot cover the whole study area, general Gaussian model can be used to 16 

retrieve the soil moisture for these uncovered cells. By assimilating the soil moisture from 17 

general Gaussian model, the surface soil moisture field can be predicted more accurately as 18 

compared with the scenario without soil moisture assimilation (Figure 9).  19 

The time evolution of two upper soil zone parameters (UZTWM and UZFWM) is shown in 20 

Figure 10. Two scenarios (scenario 1 and 5) were examined. For scenario 1 (only assimilating 21 

outlet streamflow), the posterior distributions of the two parameters did not converge to the 22 

“true” values and the uncertainty did not decrease over time, although the mean value of 23 
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UZFWM was close to the “true” value. For scenario 5, even the assimilated soil moisture were 1 

estimated from geostatistical model, the convergence of both parameters can be clearly seen.  2 

 3 

------------------------------------------------ 4 

Please place Figure 10 here 5 

------------------------------------------------ 6 

 7 

 8 

5 Conclusion 9 

The PF-MCMC method is used to assimilate the synthetic ASCAT soil moisture retrievals 10 

(12.5×12.5 km2) and the synthetic streamflow from five gauges (four internal and one outlet 11 

gauges) into the fully distributed SAC-SMA model at the same spatial scale. A total of five data 12 

assimilation scenarios are designed in this study. These scenarios explore the effects of the 13 

locations of streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture 14 

and streamflow. The results suggest that:  15 

 (1) by only assimilating the unbiased outlet streamflow, the PF-MCMC can successfully 16 

track the runoff filed (inverse-routing) and the internal segment streamflow;  17 

(2) it is possible to improve outlet streamflow prediction by assimilating the streamflow of 18 

the four internal gauges;  19 

(3) higher accuracy can be achieved along the streamflow segment network by assimilating 20 

more streamflow gauge data. 21 

Another main goal of this study was to introduce a geostatistical model to combine with 22 

PF-MCMC to overcome the satellite discontinuity issues where satellite data does not cover the 23 
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whole study region or is significantly biased, and the dominant land cover is dense vegetation. 1 

Our results further suggest that:  2 

(4) when satellite data cannot cover the whole study area or the land surface is dominant 3 

with dense vegetation, the general Gaussian model can be used to complement the soil moisture; 4 

(5) with only 20% of the watershed covered with the satellite footprint, the soil moisture in 5 

the remaining 80% of the uncovered areas can be estimated using general Gaussian model within 6 

the expected satellite data quality threshold (RMSE<0.04);  7 

(6) by jointly assimilating the soil moisture inferred from the general Gaussian model and 8 

outlet streamflow, the RMSE of the surface soil moisture prediction is significantly reduced 9 

when compared with the assimilation of outlet streamflow only.  10 

Overall, these findings can further aid the application of satellite soil moisture data for even 11 

drought monitoring and forecasting where the soil moisture deficit is the main variable that 12 

characterizes the agricultural drought.  13 
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Table 1. The summary of parameters in the SAC-SMA model. The values in the parenthesis are 1 

the synthetic truths used to generate the synthetic streamflow and soil moisture. 2 

Parameters Description 
Range and 

Synthetic Truth 

Storage 

UZTWM upper zone tension-water maximum, mm 10-300 (75) 

UZFWM upper zone free-water maximum, mm 5-150 (70) 

LZTWM lower zone tension-water maximum, mm 10-500 (335) 

LZFPM lower zone free primary maximum, mm 10-1000 (215) 

LZFSM lower zone free secondary maximum, mm 5-400 (68) 

ADIMP additional impervious area 0-0.4 (0.2) 

Recession 

UZK upper zone recession coefficient, day-1 0.1-0.75 (0.25) 

LZPK lower zone primary recession coefficient, day-1 0.0001-0.05 (0.01) 

LZSK lower zone secondary recession coefficient, day-1 0.01-0.35 (0.05) 

Percolation and 

other 

ZPERC maximum percolation rate 5-350 (85) 

REXP percolation equation exponent 1-5 (2.6) 

PCTIM impervious fraction of watershed 0-0.1 (0.035) 

PFREE free water percolation from upper to lower zone 0-0.1 (0.05) 

Routing 

Kq Nash-cascade routing coefficient, day-1 0.1-0.5 (0.23) 

Not estimated 

RIVA riparian vegetated area 0.01 

SIDE deep recharge to channel baseflow 0 

RSERV lower zone free water not transferable to tension water 0.3 
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Table 2. The summary of five data assimilation scenarios. 1 

Scenario Assimilated Data Description 

1 Streamflow Outlet 

2 Streamflow Internal gauges 1-4 

3 Streamflow 5 gauges 

4 Streamflow + Soil moisture Outlet + Synthetic truth soil moisture 

5 Streamflow + Soil moisture Outlet + Soil moisture from geostatistical model 

 2 
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 13 
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 20 
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Table 3. The summary of DA performance for scenarios 1-3. 1 

Metric Gauge 

Assimilated Data and Scenario 

Outlet gauge 

(Scenario 1) 

Internal 4 gauges 

(Scenario 2) 

Total 5 gauges 

(Scenario 3) 

NSE 

Outlet 0.99 0.99 1.00 

1 0.99 0.99 0.99 

2 0.99 0.99 1.00 

3 0.97 0.99 0.99 

4 0.99 0.99 0.99 

Avg. 0.99 0.99 0.99 

ER95(%) 

Outlet 1.0 7.0 3.2 

1 0.7 7.5 4.4 

2 0.6 6.2 1.2 

3 0.0 7.5 2.1 

4 1.2 8.2 6.7 

Avg. 0.7 7.3 3.5 

 2 
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 10 

 11 

 12 

 13 
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Table 4. The summary of DA performance for scenarios 4-5. Scenario 1 is also presented to 1 

compare the surface moisture filed. The metrics NSE and ER95 are used for streamflow while 2 

RMSE is used for surface soil moisture (in terms of degree of saturation).  3 

Metric Gauge 

Assimilated Data and Scenario 

Outlet 

gauge 

(Scenario 1) 

Outlet gauge +  

Synthetic truth  

soil moisture 

(Scenario 4) 

Outlet gauge +  

Soil moisture from  

geostatistical model 

(Scenario 5) 

NSE 

Outlet 0.99 0.98 0.97 

1 0.99 0.97 0.95 

2 0.99 0.98 0.94 

3 0.97 0.92 0.72 

4 0.99 0.98 0.97 

Avg. 0.99 0.97 0.91 

ER95(%) 

Outlet 1.0 0.0 1.6 

1 0.7 1.5 1.8 

2 0.6 0.0 1.9 

3 0.0 1.5 3.8 

4 1.2 0.3 1.2 

Avg. 0.7 0.7 2.1 

RMSE 
Basin 

Avg. 
0.054 0.018 0.025 
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 1 

Figure 1. The flowchart of the combined data assimilation with geostatistical modeling. 2 
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 1 

Figure 2. The location of the study watershed, the delineation of the five sub-watersheds, and the 2 

footprint (12.5×12.5 km2) of synthetic ASCAT data over the watershed. 3 
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 1 

Figure 3. The spatial pattern of mean daily forcing data, precipitation (P) and potential evapotranspiration (PET), from Oct. 1 2005–2 

Sep. 30 2007.  3 
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 1 

Figure 4. The mean daily synthetic runoff, the inverse routing runoff, and their RMSE values, based on the simulated period Oct. 1 2 

2005–Sep. 30 2007.   3 
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 1 

Figure 5. The streamflow hydrographs for the five gauges from scenario 3 (assimilating five 2 

gauge streamflow). 3 
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 1 

Figure 6. Synthetic ASCAT soil moisture (degree of saturation) for the dry (left) and wet (right) days. 2 
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 1 

Figure 7. Standardized covariates: elevation, slope, and cos (aspect) for each grid cell. 2 
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 1 

Figure 8. The RMSE for the prediction cells against the training cells for general Gaussian 2 

model with respect to the percent of the total watershed area. The x-axis indicates the number of 3 

total watershed grid cells, which are used to train the model (the remaining grid cells are used to 4 

validate the model). The dash line indicates the recommended ASCAT RMSE threshold for the 5 

study area.  6 
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 1 

Figure 9. The RMSE values (in terms of degree of saturation) for the surface soil moisture 2 

(synthetic truth vs. geostatistical model/DA predictions) from different scenarios. The top-left 3 

panel shows the performance of geostatistical modelling (the nine zero RMSE grid cells indicate 4 

the cells used in model training). The top-right panel shows the high uncertainty of soil moisture 5 

field if only outlet streamflow is assimilated. The bottom-left panel indicates that the joint 6 

assimilation of outlet streamflow and satellite soil moisture can significantly improve the soil 7 
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moisture field. The bottom-right panel suggests that if the study area cannot be covered by 1 

satellite data, assimilating the soil moisture from geostatistical model can significantly improve 2 

the soil moisture predictions. 3 
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 1 

Figure 10. Evolution of two upper soil zone model parameters (UZTWM and UZFWM) for two 2 

scenarios. The shaded areas correspond to 95, 68, and 10 percentiles of prediction intervals. The 3 

line is the mean value and the symbol on the right y-axis is the predefined parameter value. The 4 

convergence of parameters can be seen with the assimilation of soil moisture from the 5 

geostatistical model. 6 




